Channeling Curiosity into R Data Visualization Projects

Alex Albright, Harvard University
Aspiring Economist & Data Visualization Enthusiast

February 20, 2018
Agenda

- Introduce myself and how I got into R
- Demonstrate how questions can lead to R projects
- Present data visualizations and code for select projects
 - Teaser: will discuss *Sports Illustrated*, science degrees, Pixar, the Senate, and *Friends*!
- Talk about workflow: generating questions, using notebooks, writing code, sharing product/code
Aspiring Economist

I am a 2nd year PhD student.

Table 6: Impact of Award assigned at Year 1 on Math Olympiad (MO) Performance at Year 1 + 1 (Classmate

<table>
<thead>
<tr>
<th>Panel B: Classmates</th>
<th>Participated in MO Exam at Year 1+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Award</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>0.001***</td>
</tr>
<tr>
<td>Students (obs.)</td>
<td>3,345,290</td>
</tr>
<tr>
<td>Classmates (Clusters)</td>
<td>117,882</td>
</tr>
<tr>
<td>Dep. variable control - Var</td>
<td>0.024</td>
</tr>
<tr>
<td>Rob selection</td>
<td>0.024</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
</tr>
</tbody>
</table>

Panel B: Classmates

<table>
<thead>
<tr>
<th>Award</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.008*</td>
<td>0.009***</td>
<td>0.008***</td>
<td>0.007**</td>
</tr>
<tr>
<td>Students (obs.)</td>
<td>69,972</td>
<td>69,972</td>
<td>127,391</td>
<td>82,035</td>
</tr>
<tr>
<td>Classmates (Clusters)</td>
<td>54,313</td>
<td>54,313</td>
<td>77,191</td>
<td>52,854</td>
</tr>
<tr>
<td>Dep. variable control - Var</td>
<td>0.024</td>
<td>0.024</td>
<td>0.024</td>
<td>0.024</td>
</tr>
<tr>
<td>Rob selection</td>
<td>0.024</td>
<td>0.024</td>
<td>0.024</td>
<td>0.024</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

1. T2 pure & T1 mix?

This is not possible since the indifference condition fails to hold [both if T2 plays W and if T2 plays S]:

\[u_1(W, W) = 4 > 2 = u_1(S, W) \]
\[u_1(S, W) = 2 > -2 = u_1(W, S) \]

2. T1 pure & T2 mix?

This is not possible since the indifference condition fails to hold [both if T1 plays W and if T1 plays S]:

\[u_2(W, W) = 2 > 2 = u_2(W, W) \]
\[u_2(S, W) = -2 > -4 = u_2(S, S) \]

3. Both mix?

We know that since we have a finite game, there must exist a Nash equilibrium. Since we have shown that neither team can play pure strategies, it must be the case that both mix.

T1 must be indifferent between playing W and S. Say T1 plays W with probability \(\alpha \) and S with probability \(1 - \alpha \); then we set

\[4\alpha - (2(1 - \alpha)) = 2\alpha + 2(1 - \alpha) \]

\[\alpha = \frac{2}{3} \]

Moreover, T2 must also be indifferent between playing W and S. Say T2 plays W with probability \(\beta \) and S with probability \(1 - \beta \); then we set

\[-2\beta - 2(1 - \beta) = 2\beta - 4(1 - \beta) \]

\[\beta = \frac{1}{3} \]

Thus, the mixed Nash equilibrium is:

\[(\frac{2}{3} W \oplus \frac{1}{3} S, \frac{2}{3} W \oplus \frac{1}{3} S) \]

A pair of beliefs for employers about the two groups will be self-confirming if, by choosing standards optimal for those beliefs, employers induce workers from the two groups to become qualified at precisely the rate postulated by the beliefs. Thus, we can define equilibrium as follows.

Definition 1: An equilibrium is a pair of beliefs \((\pi_b, \pi_w)\) satisfying

\[\pi_i = G(\beta^*(\pi_i)) \quad i = b, w. \]
Data Visualization Enthusiast

I share my work at thelittledataset.com.
Why R?

Well, economists actually mainly use Stata.

- So, I started coding in Stata.
- Eventually realized I couldn’t easily share my work.
- Stata is not free!
- Limited to those with institutional or industry access.
 - Isolates academic research: makes it less publicly accessible & more black box-y.
Why R?

In contrast to Stata... is free and open source!

And...

- it can be faster too
- it has a vibrant/active/helpful community
 - check out #rstats twitter
 - R-ladies organizations
- data visualization options are beautiful!
 - thanks ggplot2
 - more on this soon...

Alex Albright | Channeling Curiosity into R Data Visualization Projects
Now what?

There are tons of great resources for learning R as well as tons of great ways to use R.

I wanted to learn to **build data visualizations to answer questions visually**.

By making data visualizations, you practice data storytelling. You learn how to:

- formulate interesting questions
- find/collect datasets
- clean and shape data
- identify the heart of data-driven results \(\approx \) be conceptually succinct
- practice intriguing and friendly design
- use packages and customize plots
Illustrating by example

I will show how curiosity and questions can fuel R data visualization projects:

▶ How often are women on the cover of *Sports Illustrated* (and not in swimsuits)?
▶ How do sciences compare in their %s of women and ethnic/racial groups?
▶ How has Pixar movie success changed over time?
▶ How did all US Senators vote on healthcare repeal?
▶ Which characters are closest on the TV show *Friends*?

For each question:

▶ Outline motivation/question
▶ Present “visual answer”
▶ Present key code snippets (workhorse package for almost everything = ggplot2!)
How often are women on the cover of *Sports Illustrated* (and not in swimsuits)?
How often are women on the cover of *Sports Illustrated* (and not in swimsuits)?

- Comedian John Oliver did a “How Is This Still a Thing?” piece on the swimsuit issue
- Became curious about gender representation in the magazine
- Collected data from the online *Sports Illustrated* Covers Archive for years 2010-2014
How often are women on the cover of *Sports Illustrated* (and not in swimsuits)?

- Five-year time span and 487 covers (often multiple covers for same week)
- Counted the number of covers featuring:
 - male athletes/coaches (448)
 - other miscellaneous men (4)
 - female athletes/coaches (13)
 - female swimsuit models (7)
 - other miscellaneous women (5)
 - covers featuring no individual or group of individuals in particular (10)
- For the few dozen with men and women on the cover, count as female covers unless obviously male athlete at center
How often are women on the cover of *Sports Illustrated* (and not in swimsuits)?

If anything, I overestimate women’s representation.

A cover featuring a male athlete (woman in the background)

A cover featuring miscellaneous women
How often are women on the cover of *Sports Illustrated* (and not in swimsuits)?

How to visualize?

- Have cover counts and associated years
- Interested in showing covers distribution over each year as well as full 5-year distribution
- Want to show distribution for the subset of female-focused covers
How often are women on the cover of *Sports Illustrated* (and not in swimsuits)?

- Only 2.67% of 2010-2014 covers feature female athletes or coaches
- 52% female covers feature athletes or coaches while 99.12% of male covers feature athletes or coaches
- Kate Upton has more covers (4) than all WOC athletes (3)
How often are women on the cover of *Sports Illustrated* (and not in swimsuits)?

Generate four plots and then use a `multiplot()` function to combine them (could also use `grid.arrange()`)

```r
# 2010-14


# Generate four plots
p1 <- ggplot(data = si.data, aes(x = Year, y=Frequency, fill = On.Cover)) +
  geom_bar(stat="identity")+ coord_flip() + scale_fill_manual(values = pal2, guide_legend(title="On Cover")) +
  labs(title = "Who is Featured on 'Sports Illustrated' Covers? (Year-by-Year)") +
  theme_tufte(ticks=FALSE, base_family="Georgia")

# No People

p2 <- ggplot(data = si.data, aes(x = Year, y=Frequency, fill = On.Cover)) +
  geom_bar(stat="identity")+ coord_flip() + scale_fill_manual(values = pal2, guide_legend(title="On Cover")) +
  labs(title = "Who is Featured on 'Sports Illustrated' Covers? (Year-by-Year)") +
  theme_tufte(ticks=FALSE, base_family="Georgia")

# Female Swimsuit Models

p3 <- ggplot(data = si.data, aes(x = Year, y=Frequency, fill = On.Cover)) +
  geom_bar(stat="identity")+ coord_flip() + scale_fill_manual(values = pal2, guide_legend(title="On Cover")) +
  labs(title = "Who is Featured on 'Sports Illustrated' Covers? (Year-by-Year)") +
  theme_tufte(ticks=FALSE, base_family="Georgia")

# Male Athletes/Coaches

p4 <- ggplot(data = si.data, aes(x = Year, y=Frequency, fill = On.Cover)) +
  geom_bar(stat="identity")+ coord_flip() + scale_fill_manual(values = pal2, guide_legend(title="On Cover")) +
  labs(title = "Who is Featured on 'Sports Illustrated' Covers? (Year-by-Year)") +
  theme_tufte(ticks=FALSE, base_family="Georgia")

# Combine the plots

library(gridExtra)

grid.arrange(p1, p2, p3, p4, ncol=2)
```

- Use simple `geom_bar()` with `fill = On.Cover` as an aesthetic mapping/`aes()`
- `On.Cover` is the collected variable that defines the type of cover
How often are women on the cover of *Sports Illustrated* (and not in swimsuits)?

- July 2015, *Sports Illustrated* released 25 different covers to celebrate the World Cup-Winning US Women’s Soccer Team
- Big impact on previous graph!
- Use my own customized theme here instead of theme_tufte()
How do sciences compare in their %s of women and ethnic/racial groups?
How do sciences compare in their %s of women and ethnic/racial groups?

- Became curious about this when applying for graduate school
- “The sciences” often treated as a homogeneous group – they are not in terms of representation
- Looked into the NSF Open Data Portal
- Found data for 2002-2012

First, I ask: how do sciences compare in female representation at undergraduate and doctoral levels?
(Use only 2012 data)
How do sciences compare in their %s of women and ethnic/racial groups?

Where My Girls At? (In the Sciences)
Part I: Comparing Percentages of Women in the Sciences at the Undergraduate & Doctoral Levels
Source: NSF Data on Degrees Awarded, 2012; Created by: Alex Albright (thelittledataset.com & @AllbriteAllday)

- Visually identify each discipline and the parent science group
- Use ggplot() with geom_point()
- Set color within geom_point() based on parent category of science
- Use geom_label_repel() to label the points and make sure that they don’t overlap
- Note variation within parent categories

Alex Albright | Channeling Curiosity into R Data Visualization Projects
How do sciences compare in their %s of women and ethnic/racial groups?

- Now, ethnic/racial representation for the sciences 2002-2012
- Want to look over time
- Can use stacked area graphs, nightingale graphs, and line charts
- Use `facet_wrap(~Type, ncol=6)` to create a graphic with distinct plots for each field (Type=type of science)
How do sciences compare in their %s of women and ethnic/racial groups?

Using `geom_area(aes(fill=Group), position='stack')`:

![Demographic Breakdown of Science PhDs](image)

Note: The ethnic and racial groups provided are subsets of the 'US citizen and permanent resident' category.
How do sciences compare in their %s of women and ethnic/racial groups?

Using `geom_bar(stat="identity", aes(fill=Group), position='stack')+ coord_polar()`:

![Demographic Breakdown of The Science PhD's](image)

Note: The ethnic and racial groups provided are subsets of the 'US citizen and permanent resident' category

Visually clear for comparing red and black areas... less so for the smaller categories
How do sciences compare in their %s of women and ethnic/racial groups?

Using `geom_line(size=1)`:

Demographic Breakdown of The Science PhD's

NSF Data on Degrees Earned, 2002-2012
Created by: Alex Albright (thelittledataset.com & @AllbriteAllday)

Clearest for discussing time trends in any specific field

Alex Albright
Channeling Curiosity into R Data Visualization Projects
How do sciences compare in their %s of women and ethnic/racial groups?

Part of the code for creating these three visuals:

```r
p <- ggplot(data=sci_moreall, aes(x=year, y=perc, group=Group, fill=Group, color=Group)) +
  scale_fill_manual(values = pal1) +
  scale_color_manual(values = pal1) +
  my_theme()+
  facet_wrap(~Type, ncol=6)+
  labs(title="", x="Note: The ethnic and racial groups provided are subsets of the 'US citizen and permanent resident' category", y="")+
  scale_y_continuous(labels = percent_format())+
  ggttitle(expression(atop(bold("Demographic Breakdown of The Science PhD's"),
    atop(italic("NSF Data on Degrees Earned, 2002-2012"),
    atop(italic("Created by: Alex Albright (thelittledataset.com & @AllbriteAllday")),""))))

#Stacked area graph
p+geom_area(aes(fill=Group), position='stack')+ scale_x_discrete(breaks=c("2002","2007","2012"))

#Nightingale graphs
p+geom_bar(stat="identity", aes(fill=Group), position='stack')+ coord_polar()+ facet_wrap(~Type, ncol=6)

#Line graphs
p+geom_line(size=1)+facet_wrap(~Type, ncol=6) + scale_x_discrete(breaks=c("2002","2007","2012"))
```

Alex Albright | Channeling Curiosity into R Data Visualization Projects
How has Pixar movie success changed over time?
How has Pixar movie success changed over time?

Dimensions of success:

- reviews/public perception
- awards/critical acclaim
- $$$

Focus on some of the most salient related metrics: Oscar awards, Rotten Tomatoes score, and opening weekend gross

How can one illustrate all three dimensions simultaneously?
How has Pixar movie success changed over time?

Bubble chart!
► scatterplot to show % fresh over time
► bubble size is revenue
► color is Oscar status

Inside Out was a return to BC2 (Before Cars 2) review levels!
How has Pixar movie success changed over time?

![Pixar is Back, Baby](image)

Pixar is Back, Baby

20 years of pixar at a glance (part I)

Created by: Alex Albright (thelittledataset.com/@AllbriteAllday)

Details:
- truncate y-axis to emphasize quality changes
- scale gross to area of the bubbles (not radii)

Relevant code snippets:
- `geom_point(aes(size=weekend, color=factor(Oscars)))`
- `scale_size_area()`

Alex Albright

Channeling Curiosity into R Data Visualization Projects
How did all US Senators vote on healthcare repeal?

There were three Obamacare repeal proposals this summer (after vote to begin debate)

- Each failed, but in a different way
- News outlets (such as the *NYTimes*) reported how each Senator voted for all the proposals
- Still was hard to see the full picture of votes

Used vote data to geographically illustrate Senator healthcare repeal votes

How Each Senator Voted on Obamacare Repeal Proposals

By ALICIA PARLAPIANO, WILSON ANDREWS, JASMINE C. LEE and RACHEL SHOREY UPDATED JULY 28, 2017

The Senate rejected a third Republican proposal to repeal the Affordable Care Act early Friday morning. The "skinny" repeal amendment, called the Health Care Freedom Act, would have repealed the mandates that most individuals have health insurance and that large employers cover their employees, among other provisions.

Earlier this week, the Senate voted against two other amendments: one to *repeal and replace* the current health law with a new plan and one to just *partly repeal* it.

<table>
<thead>
<tr>
<th>Republicans</th>
<th>Senators</th>
<th>Initial</th>
<th>Medical</th>
<th>Partial</th>
<th>Repeal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susan Collins Me.</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lisa Murkowski Alaska</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>John McCain Ariz.</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dean Heller Nev.</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamar Alexander Tenn.</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shelby Moore Capito W.Va.</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rob Portman Ohio</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob Corker Tenn.</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tom Cotton Ark.</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Democrats*</th>
<th>Senators</th>
<th>Initial</th>
<th>Medical</th>
<th>Partial</th>
<th>Repeal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tommy Baldwin Wis.</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michael Bennet Colo.</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richard Blumenthal Conn.</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cory Booker N.J.</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sherrod Brown Ohio</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maria Cantwell Wash.</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benjamin L. Cardin Md.</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thomas R. Carper Del.</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob Casey Pa.</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How did all US Senators vote on healthcare repeal?

Tuesday, July 25th, 2017

Senate Votes Visualized:
Vote to Begin Debate

(D) NO (R) NO (R) YES

Final vote count: 51-50 (passed with Pence casting the tie-breaking vote)
Bernie Sanders (I-VT) and Angus King (I-ME) caucus with the Democrats
Data source: NYTimes | Visualization via Alex Albright (thelittledataset.com) | DC emoji choice via Jesse White
How did all US Senators vote on healthcare repeal?

Useful exercise for using geofacet package!

```r
deb <- ggplot(healthcare_debate_vote, aes("", votes, fill = senator_group)) +
    geom_col(alpha = 1, width = 1) +
    my_theme() +
    coord_flip() +
    scale_fill_manual(values = c("dodgerblue2", "darkorchid2", "firebrick2"), breaks = c("Dem", "R_vote_against_debate", "R_vote_for_debate"), labels = c("(D) NO", "(R) NO", "(R) YES")) +
    facet_geo(~ state, grid = "us_state_grid2", label = "code") +
    scale_y_continuous(expand = c(0, 0)) +
    ggtitle("Senate Votes Visualized: Vote to Begin Debate") +
    labs(caption = "Final vote count: 51-50 (passed with Pence casting the tie-breaking vote)\nBernie Sanders (I-VT) and Angus King (I-ME) caucus with the Democrats\nData source: NYTimes | Visualization via Alex Albright (the littledataset.com) | DC emoji choice via Jesse White") +
    theme(
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        strip.text.x = element_text(size = 7)) +
    ggsave("deb.png", width = 12, height = 8, dpi = 800)
```

Made tile grid maps

- Code up using `geom_col()` so that each state consists of two columns (one for each senator) and columns are coded based on party and vote.
- Use `facet_geo()` to arrange these 2 column plots into the spaces associated with the appropriate states.
How did all US Senators vote on healthcare repeal?

Also practice using the magick package!

```r
# Now call back the plot
background <- image_read("deb.png")
# And bring in a zipper emoji
zipper_raw <- image_read("zipper.png")
zipper <- zipper_raw %>%
  image_scale("400")
new <- image_composite(background, zipper, offset = "+6650+2850")
image_write(new, "deb_final.png", flatten = F)
```

Insert emoji image onto DC space (since they have no Senators)

- Use `image_read()` to call existing png images
- Make new image with `image_composite()` and place emoji on map using offset coordinates
How did all US Senators vote on healthcare repeal?

Senate Votes Visualized:
Repeal and Replace Amendment

Final vote count: 43-57 (failed)
Bernie Sanders (I-VT) and Angus King (I-ME) caucus with the Democrats
Data source: NYTimes | Visualization via Alex Albright (thelittledataset.com) | DC emoji choice via Jesse White

Still Tuesday, July 25th, 2017
How did all US Senators vote on healthcare repeal?

Wednesday, July 26th, 2017

Senate Votes Visualized:
Partial Repeal Amendment

Final vote count: 45-55 (failed)
Bernie Sanders (I-VT) and Angus King (I-ME) caucus with the Democrats

Data source: NYTimes | Visualization via Alex Albright (thelittledataset.com) | DC emoji choice via Jesse White

Wednesday, July 26th, 2017

Alex Albright | Channeling Curiosity into R Data Visualization Projects
How did all US Senators vote on healthcare repeal?

Senate Votes Visualized: 'Skinny' Repeal Amendment

Final vote count: 49-51 (failed)
Bernie Sanders (I-VT) and Angus King (I-ME) caucus with the Democrats
Data source: NYTimes | Visualization via Alex Albright (thelittledataset.com) | DC emoji choice via Jesse White

Friday, July 28th, 2017
How did all US Senators vote on healthcare repeal?

Another option: use voteogram package

- Easy to retrieve voting data (`sen <- roll_call("senate", 115, 1, 110)`) & make vote maps:

```r
senate_carto(sen) +
labs(title="Senate Vote 110 - Invokes Cloture on Neil Gorsuch Nomination") +
theme_lipsm_rc(plot_title_size = 24) +
theme_voteogram()
```

![Senate Vote 110 - Invokes Cloture on Neil Gorsuch Nomination](image)
Which characters are closest on the TV show *Friends*?

“In re-watching the show, I remembered that certain pairs of characters were closer (friendship-wise) than others—and I began to wonder whether one could illustrate the closeness (or lack thereof) between certain characters using quantitative data from the 236 episodes of the show…”

This was a project that started before I was familiar with R but I revisited a few times with more data visualization knowledge over time...
Which characters are closest on the TV show *Friends*?

What kind of data is needed to answer this question?

- Lots of options
- Ideally, shared screen time
 - Impossible to collect without making it your life for years
- First pass: settled on collecting data on which characters had shared plotlines
- Collected subjectively by reviewing episodes on Netflix and through Wikipedia summaries
- Coded all the episodes by plot dynamics
Which characters are closest on the TV show *Friends*?

Let me formalize this very silly endeavor...

Let us consider the question of character groupings in basic mathematical terms. There are six friends, each an element of the overarching “group,” defined as the set $F=\{1,2,3,4,5,6\}$ where 1, 2, 3, 4, 5, 6 represent Chandler, Joey, Monica, Phoebe, Rachel, and Ross respectively (the listing method is alphabetical). Each episode features character groupings in the form of shared plots, which in turn correspond to subsets of F. For example, “The One With George Stephanopoulos” would be represented by the set $\text{TOWGS}=\{\{1,2,6\},\{3,4,5\}\}$ since the plotline with the guys at the hockey game, $\{1,2,6\}$ ($\subseteq F$), is an element of TOWGS as is the plotline with the girls getting pizza/watching George drop his towel, $\{3,4,5\}$ ($\subseteq F$). There are 64 possible subsets of set F, including both the empty set and F itself ($64=2^6$).
Which characters are closest on the TV show *Friends*?

Armed with plotline data, January-2015-Alex only knew how to make graphs in Excel... like this:

Frequencies for *Friends* 2-Person Dynamics

- **Frequency Adjusted** = all shared plotlines (not just those exclusive to the two individuals of interest)

Alex Albright
Channeling Curiosity into R Data Visualization Projects
Which characters are closest on the TV show *Friends*?

Findings:

- Most frequent two-person dynamics (marked in green) are: Chandler/Monica, Chandler/Joey, and Rachel/Ross
- Interesting: Rachel and Ross share more exclusively 2-person plots than do Monica and Chandler (70 to 63) despite the fact that latter duo shares more plots overall than the former (94 to 81)
 - Hypothesis: Could be due to the fact that Rachel and Ross, an on-again-off-again couple, had a complicated romantic history that could have inhibited them from regularly interacting in larger group plots while Monica and Chandler were friends consistently until dating and then marriage
Which characters are closest on the TV show *Friends*?

After learning some R, decided to make a network visualization for this same dataset:

- Use `network` package in R
- Code a basic adjacency matrix for the 6 characters and then a weights matrix based on shared plotlines count
- Call on these matrices `plot.networks()` command to generate the network visualization

'Friends' Network

Edges Weighted by Number of Shared Plotlines

Edge Coloring: Black [0,20]; Purple (20,35]; Gray (35,50]; Red (50,94]
Vertex Coloring: Yellow for Female Characters; Blue for Male Characters

'Friends' Network

Vertices:
- Chandler
- Joey
- Monica
- Phoebe
- Rachel
- Ross

Edge Weighting:
- Black: 0-20
- Purple: 20-35
- Gray: 35-50
- Red: 50-94

Vertex Coloring:
- Yellow for Female Characters
- Blue for Male Characters
Which characters are closest on the TV show *Friends*?

This past summer I used another dataset for this same question!

- Giora Simchoni wrote a blog post on scraping *Friends* scripts using `rvest` and then formatting the data with `purrr` and `stringr`.

- Q: What new metric of closeness could be taken from scripts?
 A: How often characters say each others’ names.

- Sidenote: I include nicknames (“Mon”, “Rach”, “Pheebs”, and “Joe”).

 - “Pheebs” is undoubtably the stickiest of the group
 - Characters say “Pheebs” 370 times, which has a comfortable cushion over the second-place nickname “Mon” (used 73 times)
 - Characters differ in their usage of each others’ nicknames: e.g., while Joey calls Phoebe “Pheebs” 38.3% of the time, Monica calls her by this nickname only 4.6% of the time
Which characters are closest on the TV show *Friends*?

- Rachel says Ross’s name the most! (789 times! OK, we get it, Rachel, you’re in love.)
- Joey-Chandler, Monica-Chandler, Ross-Rachel still at the forefront (Note: Ross sticks out notably for Joey)

- Could be fun to calculate how reciprocated mentions are for each character coupling...

Alex Albright
Channeling Curiosity into R Data Visualization Projects
Which characters are closest on the TV show *Friends*?

- With `ggplot()`, use `geom_bar()` and `facet_wrap` to create 6 plots – one for each character.
- Use `geom_text()` to label the bars with the values.

- Most important: use `theme_bw(base_size=9, base_family="Friends")` to use the *Friends* font!

Alex Albright | Channeling Curiosity into R Data Visualization Projects
Want access to code and datasets?

Check out thelittledataset.com:

THE LITTLE DATASET THAT COULD

theories and observations from a young economist

ARCHIVE ABOUT RESEARCH CV GITHUB TWITTER RPBBS CONTACT COLLABS & PRESS

Repos for all projects on GitHub and R notebooks published on RPubs page
Workflow

Ideation

- Write down random questions that pop into your head, think about how they could be answered with data
 - Always test ideas on your friends (do they want to know the answer?)
- Play with fun datasets – *Data Is Plural* newsletter is a great source of interesting datasets
- Read the news, think about stories that could be succinctly visually communicated

R practices

- Use notebooks with RStudio
- Can narrate what you are doing and allow your future self to recall why you did what
- Encourages good communication between you and others as well as between you and your future selves
Code is clearly separate from narration/comments

- Can make sections; chronology of thought process and workflow is clear

- Visualizations rendered alongside work process
Notebooks

Another plus of notebooks:

They can double as Valentine’s Day cards.

Jalex: A Romantic Text Mining Analysis
Alex Albright
Valentine’s Day <3

Motivation
So, Jesse, you and I have joked about who sends whom more messages. We must
claim to feel certain things are true in your gut... However:
Notebooks: What could be more Romantic? (shh!)
I printed a copy of all our messages thanks to

Analysis time-series data for.

Alex Albright
Channeling Curiosity into R Data Visualization Projects
Writing your code

- Use *Stack Overflow* as a resource (can learn a ton by reading question responses)
- Find code examples of approaches by other R users

Sharing

- Make your work reproducible and accessible (*plug for blogging!*)
- Encourages extensions and allows people to check your work
- Contributing resources means contributing to a culture of learning (important for encouraging a broader group of individuals to engage with R)
- It’s satisfying!
In short, channeling curiosity into data visualization projects is an exciting and effective way to get comfortable with R!

Any questions for me?